|
学习了信号量以及共享内存后,我们就可以实现进程的同步与互斥了。说到这里,最经典的例子莫过于生产者和消费者模型。下面就和大家一起分析,如何一步步实现这个经典模型。完整代码可以在这里下载。
下面程序,实现的是多个生产者和多个消费者对N个缓冲区(N个货架)进行访问的例子。现在先想想我们以前的伪代码是怎么写的?是不是这样:
//生产者:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
while(1)
{
p(semid,1);
sleep(3);
p(semid,0);
//producer is producing a product
goods=rand()%10;//product a goods
shmaddr[indexaddr[0]]=goods;//The goods is placed on a shelf
printf("producer:%d produces a product[%d]:%d\n",getpid(),indexaddr[0],goods);
indexaddr[0]=(indexaddr[0]+1)%10;
v(semid,0);
sleep(3);
v(semid,2);
}
//消费者:
1
2
3
4
5
6
7
8
9
10
11
12
13
while(1)
{
p(semid,2);
sleep(1);
p(semid,0);
//consumer is consuming a product
goods=shmaddr[indexaddr[1]];//The goods on the shelf is taken down
printf("consumer:%d consumes a product[%d]:%d\n",getpid(),indexaddr[1],goods);
indexaddr[1]=(indexaddr[1]+1)%num;
v(semid,0);
sleep(1);
v(semid,1);
}
可能上面的代码你有些眼熟,又有些困惑,因为它和课本上的代码不完全一样,其实上面的代码就是伪代码的linuxC语言具体实现。我们从上面的代码中慢慢寻找伪代码的踪迹:p(semid,0)和v(semid,0)的作用是让进程互斥访问临界区。临界区中包含的数据indexaddr[0],indexaddr[1],以及shmaddr数组分别对应伪代码中的in,out,buffer。p(semid,1)和v(semid,2)以及p(semid,2)和v(semid,1)实现的是同步作用。
并且,在生产者中,生产者生产了一个货物(goods=rand()%10;),然后将这个货物放上货架(shmaddr[indexaddr[0]]=goods;)。在消费者中,消费和从货架上取下货物(goods=shmaddr[indexaddr[1]];)。
好了,现在再看一边上面的代码,我想你的思路就清晰了。
了解了核心代码,并不能算就完成了生产者和消费者模型,因为生产者和消费者核心代码前还得做一些些准备工作,具体要准备些什么,我们具体来分析。
首先申请一块共享内存,这块共享内存用于存放生产者所生产的货物。同时我们可以看到这块共享内存大小为10字节。这里需要注意,每个生产着或消费者运行后,都要去试着分配这样的一块共享内存。如果在当前进程运行前已经有某个进程已经创建了这块共享内存,那么这个进程就不再创建(此时createshm会返回-1并且错误代码为EEXIST),只是打开这块共享内存。创建后,再将这块共享内存添加到当前进程的地址空间。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
num=10;
//create a shared memory as goods buffer
if((shmid_goods=createshm(".",'s',num))==-1)
{
if(errno==EEXIST)
{
if((shmid_goods=openshm(".",'s'))==-1)
{
exit(1);
}
}
else
{
perror("create shared memory failed\n");
exit(1);
}
}
//attach the shared memory to the current process
if((shmaddr=shmat(shmid_goods,(char*)0,0))==(char*)-1)
{
perror("attach shared memory error\n");
exit(1);
}
接下来还要再申请一块共享内存,用于存放两个整形变量in和out(其实就是申请一个含有2个整形变量的数组而已)。他们记录的是生产和消费货物时“货架”的索引。与上面情况相同,如果已经有其他进程创建了此块共享内存,那么当前进程只是打开它而已。
注意这里对两个整形变量的初始化时的值均为0。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
//create a shared memory as index
if((shmid_index=createshm(".",'z',8))==-1)
{
if(errno==EEXIST)
{
if((shmid_index=openshm(".",'z'))==-1)
{
exit(1);
}
}
else
{
perror("create shared memory failed\n");
exit(1);
}
}
else
{
is_noexist=1;
}
//attach the shared memory to the current process
if((indexaddr=shmat(shmid_index,(int*)0,0))==(int*)-1)
{
perror("attach shared memory error\n");
exit(1);
}
if(is_noexist)
{
indexaddr[0]=0;
indexaddr[1]=0;
}
接下来就是创建一个信号量集,这个信号量集中包含三个信号量。第一个信号量实现的互斥作用,即进程对临界区的互斥访问。剩下两个均实现的是同步作用,协调生产者和消费者的合理运行,即货架上没有空位时候生产者不再生产,货架上无商品时消费者不再消费。
注意下面对每个信号量的赋值情况。互斥信号量当然初值为1。而同步信号量两者之和不能大于num的值。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
//create a semaphore set including 3 semaphores
if((semid=createsem(".",'t',3,0))==-1)
{
if(errno==EEXIST)
{
if((semid=opensem(".",'t'))==-1)
{
exit(1);
}
}
else
{
perror("semget error:");
exit(1);
}
}
else
{
union semun arg;
//seting value for mutex semaphore
arg.val=1;
if(semctl(semid,0,SETVAL,arg)==-1)
{
perror("setting semaphore value failed\n");
return -1;
}
//set value for synchronous semaphore
arg.val=num;
//the num means that the producer can continue to produce num products
if(semctl(semid,1,SETVAL,arg)==-1)
{
perror("setting semaphore value failed\n");
return -1;
}
//the last semaphore's value is default
//the default value '0' means that the consumer is not use any product now
}
基本上这样,就算完成了生产者和消费者的前期工作。我们可以看到,在核心代码中,我们只需要“装模作样”的将代码“各就各位”即可,当然这需要你理解生产者消费者这个基本模型。而在下面的准备代码中,则需要我们理解关于信号量和共享内存的一些基本函数。
最后再说说使用,建议先运行一个生产者和一个消费者,观察两者是如何协调工作的。然后再只运行一个生产者或一个消费者,看其是否会阻塞。了解了以上情况后,你就可以同时运行多个生产者和消费者了 |
|